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Abstract. According to Cayley’s tree formula, there are n"~2 labelled trees on n
vertices. Priifer gave a bijection between the set of labelled trees on n vertices and
sequences of n — 2 numbers, each in the range 1, 2, . .., n. Such a number sequence
is called a Priifer code. The straightforward implementation of his bijection takes
O(nlogn) time. In this paper we propose an O(n) time algorithm for the same
problem. Our algorithm can be easily parallelized so that a Priifer code can be gen-
erated in O(log n) time using O (n) processors on the EREW PRAM computational
model. ‘

1. Introduction

Let T be a tree with n vertices. Then tree T is called a labelled tree if the n vertices
_are distinguished from one another by names such as vy, v, . .., v,. Two labelled trees
are considered to be distinct if they have different vertex labels even though they might
be isomorphic as graphs. For example, the two trees T; and T in Figure 1 are labelled
but T3 is not. Moreover, Ty and T, are two different labelled trees even though they are
isomorphic [8].
According to Cayley’s tree formula [2], there are n"~2 different labelled trees on
n vertices. A number of proofs of Cayley’s formula are known [5], [13], [19]. In {16]
Priifer used a simple one-to-one correspondence between labelled trees on n vertices
and sequences of n — 2 numbers, each in the range 1, 2, . . ., n. Such a number sequence
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Fig. 1. Labelled and unlabelled trees.

is called a Priifer code. A straightforward implementation of his proof for generating a
Priifer code takes O(nlogn) time. Although the problem of producing a Priifer code
in linear time is an exercise in two books [4], [15], there exists no explicit publication
of a solution. In [20] Wang et al. introduced a parallel algorithm to obtain a labelled
tree from a Priifer code. In this paper we propose an O(n) time algorithm for gen-
erating a Priifer code from a labelled tree. Our algorithm can be easily parallelized on
the EREW PRAM (Exclusive-Read-Exclusive-Write Parallel Random Access Machine)
computational model, and a Priifer code can be generated in O(logn) time with O(n)
Processors.

The remaining part of this paper is organized as follows. In Section 2 we introduce
a straightforward implementation of Priifer’s proof. In Section 3 a linear time algorithm
for generating the Priifer code of a labelled tree is proposed. The parallelization of our
algorithm is shown in Section 4. Finally, in Section 5, we give the conclusion of this

paper.

2. Preliminaries

In this section we discuss how to obtain the Priifer code of a labelled tree by Priifer’s
proof [7]. Before introducing the algorithm, we define some notation which w111 be used
later.

Let T be a labelled tree whose vertices are numbered from 1 to n. For some vertex
v in T, the degree of v, denoted by deg(v), is the number of edges incident to v. If
deg(v) = 1, then v is called a leaf. Let P be a number sequence [p1, ps, ..., pi] and
let x be a number. We denote the concatenation of P and x by P ox;ie, Pox =
[p1, P25 ..., Pis X].

According to Priifer’s proof, any sequence of n — 2 numbers, each number in
{1,2, ..., n},candetermine a unique labelled tree of n vertices. Such a number sequence
is the Priifer code of a labelled tree. Algorithm A is the straightforward implementation
of Priifer’s proof.
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Fig. 2. A labelled tree.

Algorithm A

Input: A labelled tree T of n vertices.

Output: The Priifer code of T.

Method:

Step 1. Let P be the null sequence.

Step2. Fori =1ton—2do
Step 2.1. Let x be the leaf with the smallest number.
Step 2.2. Remove x and its incident edge (x, y) from T'.
Step23. P:=Poy.

Step 3. P is the Priifer code of T.

End of Algorithm

We give an example to illustrate Algorithm A. Let the input labelled tree T be the
graph depicted in Figure 2. Initially, P is a null sequence. Wheni = 1, vertex 2 is the leaf
with the smallest number. We remove vertex 2 and edge (2, 9) from 7. Then P 09 = [9].
When i = 2, vertex 3 is the leaf with the smallest number. Vertex 3 and edge (3, 6) are
removed. Then Po6 = {9, 6]. After the algorithm terminates, P = [9, 6, 4, 10,1, 5,7, 7]
which is the Priifer code of T :

The most time-consuming step in Algorithm A is Step 2. Using a heap [10], the leaf
with the smallest number can be found in O (log n) time. Hence, Step 2 takes O (n log n)
time totally. The time-complexity of Algorithm A is also O (nlogn).

The above method is used to understand Priifer’s mapping, but it is not optimal and
is hard to parallelize. In the next section we propose an efficient algorithm to get the
Priifer code of a labelled tree, and our algorithm can be parallelized easily.

3. A Linear Time Algbrithm for Generating the Priifer Code of a
Labelled Tree

Let T be a tree with n vertices numbered by 1,2, ..., n. First, rearrange T such that
T is rooted at vertex n. Let T, be a subtree of T which is induced by v and all of its
descendants with root v. We then give each vertex a new label, called the L-label, as
follows. For each vertex v of T, the L-label of v, denoted by L(v), is the ordered pair
(M(v), S(v)). Define M(v) to be the maximum vertex in T, and S(v) to be the number
of descendants w of v for which M(w) = M(v). To compute M and S, we can use
two postorder traversals [10]. Initially, let S(v) = 0 for v = 1,2,...,n. In the first
postorder traversal, let M (v) be the maximum of M (v) and M (w) for any child w of v.
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L(10) = (10,0) @

L(M=(9.1) 0 L@)= (6,1

L(%)= (9,0) L(6)= (6.0)

L(s)= (5,2) 9 0
L()= (8,1 o o L@2)= (2.0)

L(3)= (3.0)

L®)= 30 (3)

Fig. 3. A rooted labelled tree T with associated L-labels.

The second computes S using the postorder update: if M (v) = M (w), then let S(v) be
S(w) + 1. The initial depth-first-search and the two postorder traversals each take time
O(n). We illustrate the L-labelling scheme by an instance. Graph T in Figure 3 is the
tree rearranged from Figure 2 with root 10. To determine L(7), we consider T5. Since 9
is the maximum vertex in T3, M(7) = 9. Besides, since vertex 7 has only one descendant
whose first part of the L-label is 9, S(7) = 1. All L-labels of T are shown in Figure 3.

We say that L () is lexicographically less than L(v) if M(u) < M(v) orif M(u) =
M (v) and S(u) < S(v). In the above example, L(8) < L(1) and L(1) < L(10).

'The following is our algorithm for generating the Priifer code of a labelled tree, in
which parent(v) stands for the parent of vertex vin T.

Algorithm B

Input: A labelled tree T of n vertices.

Output: The Priifer code of T

Method:

Step 1. Let P be the null sequence.

‘Step 2. Rearrange T such that T is rooted at vertex n. Note that the parent of
each vertex is therefore determined. Let parent(n) be null.

‘Step 3. Compute M(v) and S(v) for all vertices v of T.

Step 4. Sort the vertices of T, using M(v) as the primary key and
S(v) as the secondary key. Let the resulting sequence be
[L(v1), L(v2), ..., L(va)].

Step 5. Fori = 1ton —2do P := P o parent(v;).

Step 6. P is the Priifer code of T.

End of Algorithm

We use graph T of Figure 3 again to illustrate Algorithm B. After doing Steps 1-3
as shown in Figure 3, sorting all L-labels lexicographically results in a sorted sequence
[2,0),(3,0),(6,0), (6, 1), (8,0), (8,1), 8,2), (9,0), (9, 1), (10, 0)]. In Step 5, when
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i = 1,v;isvertex 2since (2, 0) is the L-label of vertex 2. Thus, Poparent(2) = [9]. When
i = 2, vy is vertex 3 since (3, 0) is the L-label of vertex 3. Then P o parent(3) = [9, 6].
After Step 5 is terminated, P = [9, 6, 4, 10, 1, 5, 7, 7] which is the Priifer code of 7.

It is obvious that Steps 1 and 6 of Algorithm B can be done in O(1) time. In Step 2
the Breadth-First Search Algorithm [14] is applied to construct T;, in O (n) time. Step 3
takes O(n) time as described before. To sort all L-labels, we can apply the Distribution
Counting Algorithm [18] which needs O (n) time. Step 5 can be done trivially in O(n)
time. Thus, the complexity of Algorithm B is O (n).

The correctness of Algorithm B is shown in the following lemma.

Lemma 3.1. The resulting sequence P of Algorithm B is the Priifer code of the input
labelled tree.

Proof. For each vertex x, M(x) > x. For any pair of nonroot vertex x and its parent
'y, M(x) < M(y) and L(x) < L(y). Thus, at the first iteration of Step 5, Algorithm B
chooses the leaf with the smallest number. Then we delete the chosen vertex from the tree
and update the current tree. By induction on the number of iterations, we can show that
Algorithm B always chooses the smallest leaf of the current tree at each iteration. Assume
on the contrary that at some iteration i, Algorithm B chooses a leaf x which is different
from leaf y of the Priifer code; i.e., at iteration i, y is the chosen vertex in Algorithm A,
however, Algorithm B chose x. Since Algorithm A always chooses the leaf with the -
smallest number and Algorithm B chooses the leaf with the smallest L-label, x > yand
L(x) < L(y).Moreover, since both x and y are leaves of the current tree, M(x) < M(y).
Denote the vertex M(y) by z. Then it is clear that M(z) = z. (If M(z) > z, then
M(y) = z < M(z) < M(y). Contradiction.) It implies that M(2) = z = M(y) > M(x)
and so L(z) is lexicographically greater than L(x). This contradicts the fact that vertex
2 is deleted prior to x in Algorithm B. O

| Therefore, we have the fqllowing theorem.

Theorem 3.2. Algorithm B generates the Priifer code of a labelled tree in O (n) time.

4. The Parallelization of Algorithm B

In this section we address the parallelization of Algorithm B, in which each step or
substep can be implemented on the EREW PRAM model.

_ It is obvious that Steps 1, 5, and 6 of Algorithm B can be done in O(1) time by
using O (n) processors. In Step 2 the parallel algorithm for rooting a tree is applied, which
takes O (logn) time and O(n/ logn) processors [11]. By parallel sorting algorithms [3],
Step 4 takes O (log n) time with O (n) processors. Step 3 is more complex, and we explain
this step in detail in the following paragraphs with Figure 3 as an example for illustration.

Let T = (V, E) be a labelled tree rooted at vertex n. First, we construct the Euler
tour [6], 17] of T from the root and store the tour in an array A = (ay, az, ..., ax-1).
In our example, A =(10,7,5,1,8,1,5,7,9,2,9,7, 10, 4, 6, 3, 6, 4, 10) . Constructing
a Euler tour of a tree can be done in O (1) time using O(n) processors [17].
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Table 1. Finding the leftmost and the riéhtmost appearances of all vertices.

1 23 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19
¢ 10 7 S 1 8 1 5 7 9 2 9 7 10 4 6 3 6 4 10
b, 0t 2 3 4 3-2 12 3 2 1 0 1 2 3 2 1 0
fi 111 1 1 1 1 01 1 1 1 0 1 1 1 1 1 1

Let I(v) and r(v) be, respectively, the indices of the leftmost and rightmost ap-
pearances of v in A for any vertex v of T. The maximum number in T, is equal to
the maximum of {aw), G()+1+ - - - » Gr(wy}. TO determine /(v) and r (v), we need another
" array B = (b1, b2, . . ., bas—1) to keep the level of each element of A. The level of vertex
v, denoted by level(v), is the distance between v and the root in T. In our example,
B =(0,1,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,0). Array B can be determined in
O(1) time using O(n) processors [17]. Element a; = v is the leftmost appearance of v
in A if and only if level(a;..;) = level(a;) — 1, while a; = v is the rightmost appearance
of v if and only if level(a;;1) = level(a;) — 1. Fori = 2,3,...,2n —2,let f; be 1if
level(a;_1) = level(a;) — 1 or level(a;4+1) = level(a;) — 1, and let f; be 0, otherwise.
Moreover, let fi and f5,-) be 1. We can get {(v) and r(v) of all vertices by lexico-
graphically sorting all pairs (a;, i) of f; = 1. This sorting takes O(log n) time and O (n)
processors. Tables 1 and 2 illustrate how to get /(v) and r(v).

After I(v) and r(v) of each vertex v are determined, we need to find the maximum
of {aiys Aiw)+15 - - - » Br(wy}- This can be done by applying the Basic Range Minima Al-
gorithm [1], [6], [11] as follows. Define the prefix maxima of array Z = (21, 22, . - - , 21)
to be the array (p1, p2, - .., Pn) such that p; = max{z;, 22, ..., ), fori = 1,2,...,n.
Similarly, define the suffix maxima of Z to be the array (s1, 52, ..., S») such that 5; =
max{zn, Zn_1,.--- 2}, fori = 1,2,..., n. Then we build a complete binary tree 7* on
the elements of array A (the Euler tour of 7') such that each internal node u of T* holds
two arrays P, and S,, where P, and S, are the prefix maxima and the suffix maxima,
respectively, of the leaves of T;*. Figure 4 shows the complete binary tree on the ele-
ments of array A of our example. Note that A is extended with 2/ — |A| zeros when
21 < |A| < 2 for some integer 1. Moreover, an internal node is denoted by (x, y)
where x is the layer number and y is the position at layer x on 7*. Constructing such a
complete binary tree needs O (log n) time and O (n) processors [11].

_ Since T* is a complete binary tree, the lowest common ancestor of any two leaves
can be found in constant time using a single processor [9]. For some vertex v of T,

Table 2. After sorting all pairs (a;, i) of f; = 1.

v

i 2 3 4 5 6 7 8 9 10

I(v) 4 10 16 14 3 15 2 5 9 1
r(v) 6 10 16 18 7 17 12 5 11 19
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Fig.4. The complete binary tree on the elements of array A.

if I(v) = r(v), the maximum of {aw), @w)+1» - - - » Arwy} IS v. Suppose internal node
(x, y) is the lowest common ancestor of /(v) and r(v) where I(v) # r(v). Let s
and ¢ be the left and right children of (x, y), respectively. Then the leaves of Ty, y)
A1 as.(y~1)41> Q25 (y~1)425 - - - » B2r.y Of A, and S, is the suffix maxima of subarray
(G25.(y=1)415 A25.(y=1)425 - - - » A25.(y-1)4+2:-1) Of A, and P, is the prefix maxima of subarray
(azx.(y-1)+2:-|+1, A2x . (y=1)425- 1425 o+ 0 s azx.y) of A. The maximum of {al(,,), QI(w)+1s e ooy
ar(y} is the maximum of two elements: sy)-2:.(y—1) Of S5 and p,()—_(2.(y—1)42:-1) Of
P;. Hence, determining M (v) for a vertex v can be done in O(1) time on T* by a
single processor. For example, we want to find the maximum number in T;. Given
I(7) = 2 and r(7) = 12, the lowest common ancestor of /(7) and r(7) is (4, 1). (See
Figure 4.) The left and right children of (4, 1) are (3, 1) and (3, 2), respectively, in which
Sa,1y = (10,8,8,8,8,7,7,7) and P33 = (9,9,9,9, 10, 10, 10, 10). The maximum
of {ai7), aymy+1, ..., arm} is 9 since the second element of 3,1y is 8 and the fourth
clement of P32 is 9. :

We claim that there is no read conflict on T* when all vertices query their maximum
numbers simultaneously. Let # and v be any two vertices of T. If the lowest common
ancestor of I(x) and r(u) is different from the lowest common ancestor of /(v) and
r(v), there is certainly no read conflict. Suppose they have the same lowest common
ancestor, say node (x, y), in which s and ¢ are the left and right children of node (x, y),
respectively. Since I(u) is different from I(v), I (1) — . (y-D#IW)-2"-(y—-1).
This implies that I(x) and I(v) correspond to different elements of S;. With the same
argument, r(u) and r(v) correspond to different elements of P,. Therefore, all vertices
can query their maximum numbers on T* simultaneously without read conflict, and the
first parts of all L-labels can be determined in O (1) time using O(n) processors.

After getting the first parts of all L-labels, we group vertices of T such that the
vertices in each group have the same first part of the L-label. It is obvious that each
group induces a path subgraph of 7. Each group then uses the parallel prefix technique
[11], [12] to count the number of vertices to get the second numbers. It can be done in
O (log n) time using O(n/ log n) processors. Figure 5 shows how to get the second part
of each L-label.

The above procedure completes Step 3 of Algorithm B, and the complexity of Step 3
is O(logn) time with O (n) processors on the EREW PRAM model.
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Fig. 5. Labelling the graph of Figure 3 in parallel.

5. Conclusion

The mapping between a labelled tree and its Priifer code is interesting. In this paper we
present an O (n) time algorithm for generating a Priifer code from a labelled tree. Our
algorithm can be easily parallelized to solve this problem in O (log») time using O(n)
processors on the EREW PRAM model.
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